Toeplitz-Hausdorff like theorem for matrices over quaternions

Santhosh Kumar Pamula

Indian Statistical Institute Bangalore
August 23, 2019

Otto Toeplitz

Felix Hausdorff

1918: Otto Teplitz, Das algebraische Analogon zu einem Satze von Fejér, Math. Z.

1919: Felix Hausdorff, Der Wertvorrat einer Bilinearform, Math. Z.

Quaternions

- \mathbb{H} : Skew-field of Hamilton quaternions.
- An element $q \in \mathbb{H}$ is of the form $q=q_{0}+q_{1} i+q_{2} j+q_{3} k$, where i, j, k are fundamental quaternion units satisfying:

$$
i^{2}=j^{2}=k^{2}=-1=i j k
$$

- $\operatorname{Re}(q)=q_{0}, \operatorname{Im}(q)=q_{1} i+q_{2} j+q_{3} k$ and $\bar{q}=\operatorname{Re}(q)-\operatorname{Im}(q)$.
- The modulus of q is, $|q|=\sqrt{q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}$ and the imaginary unit sphere is, $\mathbb{S}=\{q \in \mathbb{H}: \operatorname{Re}(q)=0,|q|=1\}$.
- For each $m \in \mathbb{S}$, the slice $\mathbb{C}_{m}:=\{a+b m: a, b \in \mathbb{R}\} \cong \mathbb{C}$.
- If $q \in \mathbb{H}$, then $q=q_{0}+m_{q}|/ m(q)|$, where $m_{q}=\frac{\operatorname{lm}(q)}{|\operatorname{lm}(q)|} \in \mathbb{S}$.

Quaternions

- For $p, q \in \mathbb{H}$, define $p \sim q$ if and only if $p=s^{-1} q s$, for some $s \in \mathbb{H} \backslash\{0\}$.
- It is an equivalence relation on \mathbb{H} and the equivalence class,

$$
[q]=\{p \in \mathbb{H}: \operatorname{Re}(p)=\operatorname{Re}(q),|\operatorname{Im}(p)|=|\operatorname{Im}(q)|\}
$$

Note that $[q] \cap \mathbb{C}=\{\operatorname{Re}(q) \pm i|I m(q)|\}$ for every $q \in \mathbb{H}$.

Quaternions

- For $p, q \in \mathbb{H}$, define $p \sim q$ if and only if $p=s^{-1} q s$, for some $s \in \mathbb{H} \backslash\{0\}$.
- It is an equivalence relation on \mathbb{H} and the equivalence class,

$$
[q]=\{p \in \mathbb{H}: \operatorname{Re}(p)=\operatorname{Re}(q),|\operatorname{Im}(p)|=|\operatorname{Im}(q)|\}
$$

Note that $[q] \cap \mathbb{C}=\{\operatorname{Re}(q) \pm i|I m(q)|\}$ for every $q \in \mathbb{H}$.

Definition

1. A subset $\mathcal{K} \subset \mathbb{H}$ is said to be circular or axially symmetric if $[q] \in \mathcal{K}$ for all $q \in \mathcal{K}$.
2. For $\mathbb{V} \subseteq \mathbb{C}$, the circularization $\Omega_{\mathbb{V}}$ is defined by

$$
\Omega_{\mathbb{V}}:=\{a+m b: a+i b \in \mathbb{V}, m \in \mathbb{S}\} .
$$

Quaternionic numerical range

- \mathbb{H}^{n} is a right \mathbb{H}-module and the innerproduct is given by,

$$
\left\langle\left(x_{i}\right),\left(y_{i}\right)\right\rangle_{\mathbb{H}}=\sum_{i=1}^{n} \overline{x_{i}} y_{i}, \forall\left(x_{i}\right),\left(y_{i}\right) \in \mathbb{H}^{n}
$$

- The unit sphere in \mathbb{H}^{n} is, $S_{\mathbb{H}^{n}}=\left\{X \in \mathbb{H}^{n}:\|X\|=1\right\}$.

Quaternionic numerical range

- \mathbb{H}^{n} is a right \mathbb{H}-module and the innerproduct is given by,

$$
\left\langle\left(x_{i}\right),\left(y_{i}\right)\right\rangle_{\mathbb{H}}=\sum_{i=1}^{n} \overline{\bar{x}_{i}} y_{i}, \forall\left(x_{i}\right),\left(y_{i}\right) \in \mathbb{H}^{n} .
$$

- The unit sphere in \mathbb{H}^{n} is, $S_{\mathbb{H}^{n}}=\left\{X \in \mathbb{H}^{n}:\|X\|=1\right\}$.

Definition
The quaternionic numerical range of $A \in M_{n}(\mathbb{H})$ is defined by

$$
\mathrm{W}_{\mathbb{H}}(A)=\left\{\langle X, A X\rangle_{\mathbb{H}}: X \in S_{\mathbb{H}^{n}}\right\} .
$$

It is a compact and circular subset of \mathbb{H}.

Is $W_{\mathbb{H}}(A)$ convex?

Example:

$$
\text { Let } A=\left[\begin{array}{lll}
k & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]_{3 \times 3} \in M_{3}(\mathbb{H})
$$

Then $k,-k \in W_{\mathbb{H}}(A)$, but $0 \notin W_{\mathbb{H}}(A)$.

Is $W_{\mathbb{H}}(A)$ convex?

Example:

$$
\text { Let } A=\left[\begin{array}{lll}
k & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]_{3 \times 3} \in M_{3}(\mathbb{H})
$$

Then $k,-k \in W_{\mathbb{H}}(A)$, but $0 \notin W_{\mathbb{H}}(A)$.
To see this: Suppose $0=\langle X, A X\rangle_{\mathbb{H}}$ for $X=\left(x_{1}, x_{2}, x_{3}\right) \in S_{\mathbb{H}^{3}}$, then

$$
\overline{x_{1}} k x_{1}+\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}=0 .
$$

This is a contradiction, since $\operatorname{Re}\left(\overline{x_{1}} k x_{1}\right)=0$.

So, the quaternionic numerical range is not necessarily convex.

History

1936: L.A. Wolf, Similarity of matrices in which the elements are real quaternions, Bull. Amer. Math. Soc.

History

1936: L.A. Wolf, Similarity of matrices in which the elements are real quaternions, Bull. Amer. Math. Soc.
1949: H. C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proc. Roy. Irish Acad.

1951: J. L. Brenner, Matrices of quaternions, Pacific J. Math.

History

1936: L.A. Wolf, Similarity of matrices in which the elements are real quaternions, Bull. Amer. Math. Soc.

1949: H. C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proc. Roy. Irish Acad.

1951: J. L. Brenner, Matrices of quaternions, Pacific J. Math.

- The study of the convexity of $W_{\mathbb{H}}(A)$ as a subset of \mathbb{H} has begun by Kippenhahn and later followed by Wiegmann.
1951: R. von Kippenhahn, Über den Wertevorrat einer Matrix, Math. Nachr.

1955: N. A. Wiegmann, Some theorems on matrices with real quaternion elements, Canad. J. Math.

History

- J.E. Jamison proposed a problem to characterize the class of linear operators on quaternionc Hilbert space with convex numerical range.

1972: J.E. Jamison, Numerical Range and Numerical Radius in Quaternionic Hilbert spaces, Doctoral Dissertation, Univ. of Missouri.

- Propoerties of $W_{\mathbb{H}}(A) \cap \mathbb{R}$ and $W_{\mathbb{H}}(A) \cap \mathbb{C}$ are well studied.

1984: Au-Yeung, On the convexity of numerical range in quaternionic Hilbert spaces, Linear Multilinear Alg.

History

1993: F. Zhang, Permanant Inequalities and Quaternion matrices, Ph.D. Dissertataion, Univ. of California at Santa Barbara.

1994: W. So, R. C. Thompson and F. Zhang, Numerical ranges of matrices with quaternion entries, Linear and Multilinear Alg.
1995: F. Zhang, On Numerical Range of Normal matrices of Quaternions, J. Math. Physical Sciences.

History

1993: F. Zhang, Permanant Inequalities and Quaternion matrices, Ph.D. Dissertataion, Univ. of California at Santa Barbara.

1994: W. So, R. C. Thompson and F. Zhang, Numerical ranges of matrices with quaternion entries, Linear and Multilinear Alg.

1995: F. Zhang, On Numerical Range of Normal matrices of Quaternions, J. Math. Physical Sciences.

- So and Thompson gave a proof (65 pages long).

1996: W. So and R.C. Thompson, Convexity fo the upper complex plane part of the numerical range of a quternion matrix, Linear Multilinear Alg.

History

- In 1997, Zhang posed three questions.

Question 1: Is there a short and conceptual proof to show that $W_{\mathbb{H}}(A) \cap \mathbb{C}^{+}$is convex ?

Question 2 : How is $W_{\mathbb{H}}(A) \cap \mathbb{C}$ related to corresponding complex matrix ?

Question 3: Investigate $W_{\mathbb{H}}(A)$ and $W_{\mathbb{H}}(A) \cap \mathbb{C}^{+}$when A is bounded linear operator on infinite dimensional right quaternionic Hilbert space?

1997: F. Zhang, Quaternions and matrices of quaternions, Linear algebra Appl.

Relation with complex matrices

Definition

Let $A \in M_{n}(\mathbb{H})$. Then

1. for every $m \in \mathbb{S}, W_{\mathbb{H}}(A) \cap \mathbb{C}_{m}^{+}$is called \mathbb{C}_{m}-section of $W_{\mathbb{H}}(A)$. In particular,

$$
W_{\mathbb{H}}^{+}(A):=W_{\mathbb{H}}(A) \cap \mathbb{C}^{+} .
$$

2. $W_{\mathbb{H}}(A: \mathbb{C}):=\left\{\operatorname{co}(q): q \in W_{\mathbb{H}}(A)\right\}$, where $\operatorname{co}(q)=q_{0}+q_{1} i$.

Relation with complex matrices

Definition

Let $A \in M_{n}(\mathbb{H})$. Then

1. for every $m \in \mathbb{S}, W_{\mathbb{H}}(A) \cap \mathbb{C}_{m}^{+}$is called \mathbb{C}_{m}-section of $W_{\mathbb{H}}(A)$. In particular,

$$
W_{\mathbb{H}}^{+}(A):=W_{\mathbb{H}}(A) \cap \mathbb{C}^{+} .
$$

2. $W_{\mathbb{H}}(A: \mathbb{C}):=\left\{\operatorname{co}(q): q \in W_{\mathbb{H}}(A)\right\}$, where

$$
c o(q)=q_{0}+q_{1} i
$$

Note that if $A \in M_{n}(\mathbb{H})$, then $A=A_{1}+A_{2} j$, for $A_{1}, A_{2} \in M_{n}(\mathbb{C})$. Define

$$
\chi_{A}=\left[\begin{array}{cc}
A_{1} & A_{2} \\
-\bar{A}_{2} & \bar{A}_{1}
\end{array}\right]_{2 n \times 2 n} \in M_{2 n}(\mathbb{C})
$$

Relation with complex matrices

Theorem (S., 2019)
Let $A \in M_{n}(\mathbb{H})$. Then $W_{\mathbb{H}}(A: \mathbb{C})=W_{\mathbb{C}}\left(\chi_{A}\right)$.

Relation with complex matrices

Theorem (S., 2019)
Let $A \in M_{n}(\mathbb{H})$. Then $W_{\mathbb{H}}(A: \mathbb{C})=W_{\mathbb{C}}\left(\chi_{A}\right)$.

- This mplies that $W_{\mathbb{H}}(A) \subseteq \Omega_{W_{\mathbb{C}}\left(\chi_{A}\right)}$. The equality may not hold.

Relation with complex matrices

Theorem (S., 2019)
Let $A \in M_{n}(\mathbb{H})$. Then $W_{\mathbb{H}}(A: \mathbb{C})=W_{\mathbb{C}}\left(\chi_{A}\right)$.

- This mplies that $W_{\mathbb{H}}(A) \subseteq \Omega_{W_{\mathbb{C}}}\left(\chi_{A}\right)$. The equality may not hold.
Example: Let $A=j \in \mathbb{H}$, then $\chi_{A}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \in M_{2}(\mathbb{C})$ and

$$
\left\langle\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]\right\rangle_{\mathbb{H}}=0 .
$$

That is, $0 \in \Omega_{W_{\mathbb{C}}\left(\chi_{A}\right)}$, but $0 \notin W_{\mathbb{H}}(A)$ since $j \in \mathbb{S}$.

Connectedness properties

Theorem (Au-Yeung, 1984)
Let $A \in M_{n}(\mathbb{H})$. Then

1. for any $\alpha \in \mathbb{R}$, the set $\left\{X \in S_{\mathbb{H}^{n}}:\langle X, A X\rangle_{\mathbb{H}}=\alpha\right\}$ is connected if $A=A^{*}$
2. the set $\left\{X \in S_{\mathbb{H}^{n}}:\langle X, A X\rangle_{\mathbb{H}}=0\right\}$ is connected if $A=-A^{*}$.

Connectedness properties

Theorem (Au-Yeung, 1984)
Let $A \in M_{n}(\mathbb{H})$. Then

1. for any $\alpha \in \mathbb{R}$, the set $\left\{X \in S_{\mathbb{H}^{n}}:\langle X, A X\rangle_{\mathbb{H}}=\alpha\right\}$ is connected if $A=A^{*}$
2. the set $\left\{X \in S_{\mathbb{H}^{n}}:\langle X, A X\rangle_{\mathbb{H}}=0\right\}$ is connected if $A=-A^{*}$.

Corollary

Let $A \in M_{n}(\mathbb{H})$. Then $W_{\mathbb{H}}(A) \cap \mathbb{R}$ is either empty set or connected.

Proof

Since $A=\frac{1}{2}\left(A+A^{*}\right)+\frac{1}{2}\left(A-A^{*}\right)$, we see that

$$
W_{\mathbb{H}}(A) \cap \mathbb{R}=\left\{X \in S_{\mathbb{H}^{n}}:\left\langle X,\left(A-A^{*}\right) X\right\rangle_{\mathbb{H}}=0\right\} .
$$

From above Theorem, It follows that $W_{\mathbb{H}}(A) \cap \mathbb{R}$ is connected.

Connectedness properties

Lemma (S., 2019)

Let $A \in M_{n}(\mathbb{H})$ and let L be any line parallel to Y-axis. Then $W_{\mathbb{H}}^{+}(A) \cap L$ is connected.

Proposition (S., 2019)
Let \mathbb{V} be a finite subset of \mathbb{C}. Then

$$
\operatorname{Conv}\left(\Omega_{\mathbb{V}}\right)=\operatorname{Conv}\left(\Omega_{\operatorname{Conv}(\mathbb{V})}\right)
$$

Here Conv (\cdot) is an abbreviation for 'Convex hull of'.

Result for $M_{2}(\mathbb{H})$

Lemma (S., 2019)
Let $A \in M_{2}(\mathbb{H})$. Then every section of $W_{\mathbb{H}}(A)$ is convex.

Result for $M_{2}(\mathbb{H})$

Lemma (S., 2019)
Let $A \in M_{2}(\mathbb{H})$. Then every section of $W_{\mathbb{H}}(A)$ is convex.
proof
By the canonical form of [Brenner, 1951] there exist a unitary $U \in M_{2}(\mathbb{H})$ such that

$$
A=U^{*}\left[\begin{array}{cc}
z_{1} & p \\
0 & z_{2}
\end{array}\right] U
$$

for some $p \in \mathbb{H}$ and $z_{1}, z_{2} \in \mathbb{C}^{+}$.

Result for $M_{2}(\mathbb{H})$

Lemma (S., 2019)
Let $A \in M_{2}(\mathbb{H})$. Then every section of $W_{\mathbb{H}}(A)$ is convex.
proof
By the canonical form of [Brenner, 1951] there exist a unitary $U \in M_{2}(\mathbb{H})$ such that

$$
A=U^{*}\left[\begin{array}{cc}
z_{1} & p \\
0 & z_{2}
\end{array}\right] U
$$

for some $p \in \mathbb{H}$ and $z_{1}, z_{2} \in \mathbb{C}^{+}$. Now we show that the quaternionic numerical range of $\left[\begin{array}{cc}z_{1} & p \\ 0 & z_{2}\end{array}\right]$ is convex. Let $\left[\begin{array}{l}x \\ y\end{array}\right] \in S_{\mathbb{H}^{2}}$. Then consider the following cases.

Result for $M_{2}(\mathbb{H})$

Case(1): $z_{1}=z_{2}=z:=a+i b, p=0$

Result for $M_{2}(\mathbb{H})$

Case(1): $z_{1}=z_{2}=z:=a+i b, p=0$

$$
\left\langle\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{cc}
a+i b & 0 \\
0 & a+i b
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\rangle_{\mathbb{H}}=a\left(|x|^{2}+|y|^{2}\right)+b m_{x, y},
$$

where $m_{x, y}=\bar{x} i x+\bar{y} i y$.

Result for $M_{2}(\mathbb{H})$

Case(1): $z_{1}=z_{2}=z:=a+i b, p=0$

$$
\left\langle\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{cc}
a+i b & 0 \\
0 & a+i b
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\rangle_{\mathbb{H}}=a\left(|x|^{2}+|y|^{2}\right)+b m_{x, y},
$$

where $m_{x, y}=\bar{x} i x+\bar{y} i y$. Clearly, $\operatorname{Re}\left(m_{x, y}\right)=0$ and $\left|m_{x, y}\right| \leq 1$. That is,

$$
\left\{m_{x, y}:|x|^{2}+|y|^{2}=1\right\} \subseteq\{q \in \mathbb{H}: \operatorname{Re}(q)=0,|q| \leq 1\} .
$$

Result for $M_{2}(\mathbb{H})$

Case(1): $z_{1}=z_{2}=z:=a+i b, p=0$

$$
\left\langle\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{cc}
a+i b & 0 \\
0 & a+i b
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\rangle_{\mathbb{H}}=a\left(|x|^{2}+|y|^{2}\right)+b m_{x, y}
$$

where $m_{x, y}=\bar{x} i x+\bar{y} i y$. Clearly, $\operatorname{Re}\left(m_{x, y}\right)=0$ and $\left|m_{x, y}\right| \leq 1$. That is,

$$
\left\{m_{x, y}:|x|^{2}+|y|^{2}=1\right\} \subseteq\{q \in \mathbb{H}: \operatorname{Re}(q)=0,|q| \leq 1\}
$$

If $q \in \mathbb{H} \backslash\{0\}$ such that $\operatorname{Re}(q)=0$ and $|q| \leq 1$, then $\exists s \neq 0$ with s^{-1} is $=\frac{q}{|q|}$. Take

$$
x=\sqrt{\frac{1+|q|}{2}} \cdot \frac{s}{|s|}, \quad y=\sqrt{\frac{1-|q|}{2}} \cdot \frac{s}{|s|}
$$

Result for $M_{2}(\mathbb{H})$

Then $|x|^{2}+|y|^{2}=1$ and $m_{x, y}=q$.

Result for $M_{2}(\mathbb{H})$

Then $|x|^{2}+|y|^{2}=1$ and $m_{x, y}=q$.
If $q=0$, then by choosing $x=\frac{1}{\sqrt{2}}, y=j \frac{1}{\sqrt{2}}$ we get $m_{x, y}=0$.
This shows that

$$
\left\{m_{x, y}:|x|^{2}+|y|^{2}=1\right\}=\{q \in \mathbb{H}: \operatorname{Re}(q)=0,|q| \leq 1\} .
$$

Therefore,

$$
W_{\mathbb{H}}(A)=\{a+b m: \operatorname{Re}(m)=0 \text { with } 0 \leq|m| \leq 1\} .
$$

Result for $M_{2}(\mathbb{H})$

Then $|x|^{2}+|y|^{2}=1$ and $m_{x, y}=q$.
If $q=0$, then by choosing $x=\frac{1}{\sqrt{2}}, y=j \frac{1}{\sqrt{2}}$ we get $m_{x, y}=0$.
This shows that

$$
\left\{m_{x, y}:|x|^{2}+|y|^{2}=1\right\}=\{q \in \mathbb{H}: \operatorname{Re}(q)=0,|q| \leq 1\}
$$

Therefore,

$$
W_{\mathbb{H}}(A)=\{a+b m: \operatorname{Re}(m)=0 \text { with } 0 \leq|m| \leq 1\} .
$$

It is the solid sphere in \mathbb{R}^{4} with radius b and center at $(a, 0,0,0)$. So $W_{\mathbb{H}}(A)$ is convex.
In particular, $W_{\mathbb{H}}^{+}(A)$ is the line segment joining $\operatorname{Re}(z)$ and z, which is convex.

Result for $M_{2}(\mathbb{H})$

Graph of $W_{\text {Hi }}^{+}(A)$:

Result for $M_{2}(\mathbb{H})$

Case(2): $z_{1}=a_{1}+i b_{1}, z_{2}=a_{2}+i b_{2}, p=0$

Result for $M_{2}(\mathbb{H})$

Case(2): $z_{1}=a_{1}+i b_{1}, z_{2}=a_{2}+i b_{2}, p=0$
$\left\langle\left[\begin{array}{l}x \\ y\end{array}\right],\left[\begin{array}{cc}a_{1}+i b_{1} & 0 \\ 0 & a_{2}+i b_{2}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]\right\rangle_{\mathbb{H}}=a_{1}|x|^{2}+a_{2}|y|^{2}+b_{1} \bar{x} i x+b_{2} \bar{y} i y$.

Result for $M_{2}(\mathbb{H})$

Case(2): $z_{1}=a_{1}+i b_{1}, z_{2}=a_{2}+i b_{2}, p=0$
$\left\langle\left[\begin{array}{l}x \\ y\end{array}\right],\left[\begin{array}{cc}a_{1}+i b_{1} & 0 \\ 0 & a_{2}+i b_{2}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]\right\rangle_{\mathbb{H}}=a_{1}|x|^{2}+a_{2}|y|^{2}+b_{1} \overline{\bar{x}} i x+b_{2} \bar{y} i y$.
Suppose its imaginary part is zero, i.e.,

$$
\begin{equation*}
b_{1} \bar{x} i x=-b_{2} \bar{y} i y . \tag{1}
\end{equation*}
$$

Since $|x|^{2}+|y|^{2}=1$, we get

$$
\begin{equation*}
|x|=\sqrt{\frac{b_{2}}{b_{1}+b_{2}}},|y|=\sqrt{\frac{b_{1}}{b_{1}+b_{2}}} . \tag{2}
\end{equation*}
$$

From Equations (1), (2), we get

$$
\begin{equation*}
x^{-1} i x+y^{-1} i y=0 \tag{3}
\end{equation*}
$$

Result for $M_{2}(\mathbb{H})$

In fact, Equation (1) \Leftrightarrow Equations (2) \& (3).

Result for $M_{2}(\mathbb{H})$

In fact, Equation (1) \Leftrightarrow Equations (2) \& (3). The only choice is,

$$
x=\sqrt{\frac{b_{2}}{b_{1}+b_{2}}}, y=\sqrt{\frac{b_{1}}{b_{1}+b_{2}}} .
$$

Therefore,

$$
W_{\mathbb{H}}(A) \cap \mathbb{R}=\left\{v:=\frac{a_{1} b_{2}+a_{2} b_{1}}{b_{1}+b_{2}}\right\} .
$$

Result for $M_{2}(\mathbb{H})$

In fact, Equation (1) \Leftrightarrow Equations (2) \& (3). The only choice is,

$$
x=\sqrt{\frac{b_{2}}{b_{1}+b_{2}}}, y=\sqrt{\frac{b_{1}}{b_{1}+b_{2}}} .
$$

Therefore,

$$
W_{\mathbb{H}}(A) \cap \mathbb{R}=\left\{v:=\frac{a_{1} b_{2}+a_{2} b_{1}}{b_{1}+b_{2}}\right\} .
$$

Claim: $W_{\mathbb{H}}^{+}(A)=\operatorname{Conv}\left(\left\{z_{1}, z_{2}, v\right\}\right)$.
In particular, if we take $x, y \in \mathbb{C}$ with $\left|x^{2}+|y|^{2}=1\right.$, then $z_{1}|x|^{2}+z_{2}|y|^{2} \in W_{\mathbb{H}}^{+}(A)$.

Result for $M_{2}(\mathbb{H})$

We show that the line segment joining v and z_{1} is in $W_{H}^{+}(A)$.
Let $u_{t}:=a_{1}(1-t)+v t, x_{t}=\sqrt{\frac{a_{2}-u_{t}}{a_{2}-a_{1}}}$ and $y_{t}=j \sqrt{\frac{\nu_{t}-a_{1}}{a_{2}-a_{1}}}$ for $t \in[0,1]$. Then $\left|x_{t}\right|^{2}+\left|y_{t}\right|^{2}=1$ with

$$
\left\langle\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right],\left[\begin{array}{cc}
a_{1}+i b_{1} & 0 \\
0 & a_{2}+i b_{2}
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right]\right\rangle_{\mathbb{H}}=\left(a_{1}+i b_{1}\right)(1-t)+v t .
$$

Similarly, the line joining v and z_{2} is in $W_{H}^{+}(A)$.

Result for $M_{2}(\mathbb{H})$

We show that the line segment joining v and z_{1} is in $W_{H}^{+}(A)$.
Let $u_{t}:=a_{1}(1-t)+v t, x_{t}=\sqrt{\frac{\partial_{2}-u_{t}}{a_{2}-a_{1}}}$ and $y_{t}=j \sqrt{\frac{\nu_{t}-a_{1}}{a_{2}-a_{1}}}$ for $t \in[0,1]$. Then $\left|x_{t}\right|^{2}+\left|y_{t}\right|^{2}=1$ with

$$
\left\langle\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right],\left[\begin{array}{cc}
a_{1}+i b_{1} & 0 \\
0 & a_{2}+i b_{2}
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right]\right\rangle_{\mathbb{H}}=\left(a_{1}+i b_{1}\right)(1-t)+v t .
$$

Similarly, the line joining v and z_{2} is in $W_{H}^{+}(A)$. By the fact that $W_{\mathbb{H}}^{+}(A) \cap L$ is connected, we get that

$$
\operatorname{Conv}\left(\left\{z_{1}, z_{2}, v\right\}\right) \subseteq W_{\mathbb{H}}^{+}(A) .
$$

Finally, the equality holds since

$$
W_{\mathbb{H}}^{+}(A) \subseteq \operatorname{Conv}\left(\Omega_{\left\{z_{1}, z_{2}, v\right\}}\right)=\operatorname{Conv}\left(\Omega_{\operatorname{Conv} v}\left(\left\{z_{1}, z_{2}, v\right\}\right)\right) .
$$

Result for $M_{2}(\mathbb{H})$

$\underline{\text { Graph of } W_{\mathbb{H}}^{+}(A):}$

Result for $M_{2}(\mathbb{H})$

Case(3): $z_{1}=z_{2}=0$.

Result for $M_{2}(\mathbb{H})$

Case(3): $z_{1}=z_{2}=0$.
By Young's Inequality, we have

$$
\begin{aligned}
\left|\left\langle\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{ll}
0 & p \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\rangle_{\mathbb{H}}\right| & =|\bar{x} p y| \\
& \leq|p| \cdot \frac{|x|^{2}+|y|^{2}}{2} \\
& =\frac{|p|}{2} .
\end{aligned}
$$

Result for $M_{2}(\mathbb{H})$

Case(3): $z_{1}=z_{2}=0$.
By Young's Inequality, we have

$$
\begin{aligned}
\left|\left\langle\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{ll}
0 & p \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\rangle_{\mathbb{H}}\right| & =|\bar{x} p y| \\
& \leq|p| \cdot \frac{|x|^{2}+|y|^{2}}{2} \\
& =\frac{|p|}{2} .
\end{aligned}
$$

Let $|p|=1$. Then for any q with $|q| \leq \frac{1}{2}$, we have $q=r e^{m_{q} \theta}, 0 \leq r \leq \frac{1}{2}$ where $m_{q}=\frac{\operatorname{Im}(q)}{|\operatorname{lm}(q)|}$. If we choose $x=e^{-m_{q} \theta} \cos \alpha$ and $y=p^{-1} \sin \alpha$ such that $\sin 2 \alpha=2 r \leq 1$ and $0 \leq \alpha \leq \frac{\pi}{4}$, then $\bar{x} p y=q$.

Result for $M_{2}(\mathbb{H})$

It shows that $W_{\mathbb{H}}(A)=\left\{q \in \mathbb{H}:|q| \leq \frac{1}{2}\right\}$. If $|p| \neq 1$, then we have

$$
W_{\mathbb{H}}(A)=W_{\mathbb{H}}\left(\left[\begin{array}{cc}
0 & \frac{p}{|p|} \\
0 & 0
\end{array}\right]\right)|p|=\left\{q \in \mathbb{H}:|q| \leq \frac{|p|}{2}\right\} .
$$

Therefore,

$$
W_{\mathbb{H}}^{+}(A)=\left\{z \in \mathbb{C}^{+}:|z| \leq \frac{|p|}{2}\right\} .
$$

It is the upper half of the disc with radius $\frac{|p|}{2}$.

Result for $M_{2}(\mathbb{H})$

Graph of $W_{\text {Hi }}^{+}(A)$:

Result for $M_{2}(\mathbb{H})$

Case(4): $z_{1}=a_{1}+i b_{1}, z_{2}=a_{2}+i b_{2}, p \neq 0$
Since $\Gamma:=\left\{u+\tau: u \in W_{\mathbb{H}}^{+}\left(\left[\begin{array}{cc}z_{1} & 0 \\ 0 & z_{2}\end{array}\right]\right), \tau \in \mathbb{C}^{+}\right.$with $\left.|\tau| \leq \frac{|p|}{2}\right\}$
is convex and $W_{\mathbb{H}}^{+}(A) \cap L$ is connected, it shows that $W_{\mathbb{H}}^{+}(A)$ is convex.
Graph of $W_{\mathbb{H}}^{+}(A)$: It is clear that for any $\lambda \in W_{\mathbb{H}}^{+}(A)$, we have

$$
\lambda=\bar{x} z_{1} x+\bar{y} z_{2} y+\bar{x} p y, \text { for some }\left[\begin{array}{l}
x \\
y
\end{array}\right] \in S_{\mathbb{H}^{2}}
$$

and $|\lambda| \leq \max \left\{\left|z_{1}\right|,\left|z_{2}\right|\right\}+\frac{|p|}{2}$.
Therefore, $W_{\mathbb{H}}^{+}(A)$ is a convex subset of upper half of the disc with radius $R:=\max \left\{\left|z_{1}\right|,\left|z_{2}\right|\right\}+\frac{|p|}{2}$.

Result for $M_{2}(\mathbb{H})$

There is no guarantee that either $\operatorname{Re}(p)+|I m(p)| i$ or $\frac{|p|}{2} i$ lies in $W_{\text {Hil }}^{+}(A)$. The following are the examples of three different possibilities.

Result for $M_{2}(\mathbb{H})$

There is no guarantee that either $\operatorname{Re}(p)+|I m(p)| i$ or $\frac{|p|}{2} i$ lies in $W_{\text {Hit }}^{+}(A)$. The following are the examples of three different possibilities.
Example 1
If $z_{1}=-1+i, z_{2}=1+i$ and $p=3-4 k$, then $3+4 i \notin W_{\mathbb{H}}^{+}(A)$, but $\frac{|p|}{2} i=\frac{5}{2} i \in W_{\text {Hil }}^{+}(A)$.

Result for $M_{2}(\mathbb{H})$

Example 2
If $z_{1}=3+4 i, z_{2}=20+i, p=16 j$, then
neither $r e(p)+|i m(p)| i=16 i$ nor $\frac{|p|}{2} i=8 i$ lies in $W_{\mathbb{H}}^{+}(A)$.

Result for $M_{2}(\mathbb{H})$

Example 3
Let $z_{1}=3+4 i, z_{2}=-2+5 i$ and $p=1-j$, then

$$
r e(p)+|i m(p)| i=1+i \in W_{\mathbb{H}}^{+}(A), \text { but } \frac{|p|}{2} i=\frac{i}{\sqrt{2}} \notin W_{\mathbb{H}}^{+}(A) .
$$

Toeplitz-Hausdorff like theorem

Theorem (S., 2019)
Let $A \in M_{n}(\mathbb{H})$. Then every section of $W_{\mathbb{H}}(A)$ is convex.
Proof
Suppose $z, w \in W_{\mathbb{H}}^{+}(A)$, then

$$
z=\langle X, A X\rangle_{\mathbb{H}}, \quad w=\langle Y, A Y\rangle_{\mathbb{H}}
$$

for some $X, Y \in S_{\mathbb{H}^{n}}$. We show that the line segment joining z and w contained in $W_{\mathbb{H}}^{+}(A)$. Let V be the two-dimensional subspace generated by z, w, which is isomorphic to \mathbb{H}^{2} and let P be the projection of \mathbb{H}^{2} onto V.

Toeplitz-Hausdorff like theorem

Then $\left.P A P\right|_{V} \in M_{2}(\mathbb{H})$ with

$$
\langle X, P A P X\rangle_{\mathbb{H}}=z,\langle Y, P A P Y\rangle_{\mathbb{H}}=w .
$$

This shows that $z, w \in W_{\mathbb{H}}^{+}\left(\left.P A P\right|_{V}\right)$. Since $W_{\mathbb{H}}^{+}\left(\left.P A P\right|_{V}\right)$ is convex (from previous Lemma), the line segment joining z and w is contined in $W_{\mathbb{H}}^{+}\left(\left.P A P\right|_{V}\right) \subseteq W_{\mathbb{H}}^{+}(A)$.
Hence $W_{\mathbb{H}}^{+}(A)$ is convex.

References

P. Santhosh Kumar, A note on convexity of sections of quaternionic numerical range, Linear Algebra Appl. 572 (2019), 92-116.
K.E. Gustafson and D.K.M. Rao, Numerical Range, Universitext, Springer-Verlag, New York (1997).
R. Wo, R.C. Thompson and F. Zhang, The numerical range of normal matrices with quaternion entries, Linear Multilinear Algebra 37 (1994).
(F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl. 251 (1997) 21-57.

THANK YOU

