Toeplitz-Hausdorff like theorem for matrices over quaternions

Santhosh Kumar Pamula

Indian Statistical Institute Bangalore

August 23, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Otto Toeplitz

Felix Hausdorff

(ロ)、(型)、(E)、(E)、 E) の(()

1918: Otto Teplitz, Das algebraische Analogon zu einem Satze von Fejér, Math. Z.

1919: Felix Hausdorff, Der Wertvorrat einer Bilinearform, Math. Z.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quaternions

- ▶ II: Skew-field of Hamilton quaternions.
- ▶ An element $q \in \mathbb{H}$ is of the form $q = q_0 + q_1i + q_2j + q_3k$, where i, j, k are fundamental quaternion units satisfying:

$$i^2 = j^2 = k^2 = -1 = ijk.$$

 $\blacktriangleright \ Re(q) = q_0, \ Im(q) = q_1i + q_2j + q_3k \ \text{and} \ \overline{q} = Re(q) - Im(q).$

▶ The modulus of q is, $|q| = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}$ and the imaginary unit sphere is, $S = \{q \in \mathbb{H} : Re(q) = 0, |q| = 1\}$.

▶ For each
$$m \in \mathbb{S}$$
, the slice $\mathbb{C}_m := \{a + bm : a, b \in \mathbb{R}\} \cong \mathbb{C}$.

▶ If
$$q \in \mathbb{H}$$
, then $q = q_0 + m_q |Im(q)|$, where $m_q = \frac{Im(q)}{|Im(q)|} \in \mathbb{S}$

Quaternions

- ▶ For $p, q \in \mathbb{H}$, define $p \sim q$ if and only if $p = s^{-1}qs$, for some $s \in \mathbb{H} \setminus \{0\}$.
- \blacktriangleright It is an equivalence relation on \mathbb{H} and the equivalence class,

$$[q] = \left\{ p \in \mathbb{H} : \operatorname{\mathit{Re}}(p) = \operatorname{\mathit{Re}}(q), |\operatorname{\mathit{Im}}(p)| = |\operatorname{\mathit{Im}}(q)|
ight\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Note that $[q] \cap \mathbb{C} = \{ Re(q) \pm i | Im(q) | \}$ for every $q \in \mathbb{H}$.

Quaternions

- ▶ For $p, q \in \mathbb{H}$, define $p \sim q$ if and only if $p = s^{-1}qs$, for some $s \in \mathbb{H} \setminus \{0\}$.
- \blacktriangleright It is an equivalence relation on \mathbb{H} and the equivalence class,

$$[q] = \left\{ p \in \mathbb{H} : \operatorname{\mathit{Re}}(p) = \operatorname{\mathit{Re}}(q), \ |\operatorname{\mathit{Im}}(p)| = |\operatorname{\mathit{Im}}(q)|
ight\}.$$

Note that $[q] \cap \mathbb{C} = \{Re(q) \pm i | Im(q)|\}$ for every $q \in \mathbb{H}$.

Definition

- **1.** A subset $\mathcal{K} \subset \mathbb{H}$ is said to be *circular* or *axially symmetric* if $[q] \in \mathcal{K}$ for all $q \in \mathcal{K}$.
- **2.** For $\mathbb{V} \subseteq \mathbb{C}$, the *circularization* $\Omega_{\mathbb{V}}$ is defined by

$$\Omega_{\mathbb{V}} := \big\{ a + mb : a + ib \in \mathbb{V}, m \in \mathbb{S} \big\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Quaternionic numerical range

▶ \mathbb{H}^n is a right \mathbb{H} -module and the innerproduct is given by,

$$\langle (x_i), (y_i) \rangle_{\mathbb{H}} = \sum_{i=1}^n \overline{x_i} y_i, \ \forall \ (x_i), (y_i) \in \mathbb{H}^n.$$

▶ The unit sphere in \mathbb{H}^n is, $S_{\mathbb{H}^n} = \{X \in \mathbb{H}^n : \|X\| = 1\}.$

Quaternionic numerical range

▶ \mathbb{H}^n is a right \mathbb{H} -module and the innerproduct is given by,

$$\langle (x_i), (y_i) \rangle_{\mathbb{H}} = \sum_{i=1}^n \overline{x_i} y_i, \ \forall \ (x_i), (y_i) \in \mathbb{H}^n.$$

▶ The unit sphere in \mathbb{H}^n is, $S_{\mathbb{H}^n} = \{X \in \mathbb{H}^n : \|X\| = 1\}.$

Definition

The quaternionic numerical range of $A \in M_n(\mathbb{H})$ is defined by

$$W_{\mathbb{H}}(A) = \{ \langle X, AX \rangle_{\mathbb{H}} : X \in S_{\mathbb{H}^n} \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

It is a compact and circular subset of \mathbb{H} .

Is $W_{\mathbb{H}}(A)$ convex?

Example:

Let
$$A = \begin{bmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3 \times 3} \in M_3(\mathbb{H}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Then $k, -k \in W_{\mathbb{H}}(A)$, but $0 \notin W_{\mathbb{H}}(A)$.

Is $W_{\mathbb{H}}(A)$ convex?

Example:

Let
$$A = \begin{bmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3 \times 3} \in M_3(\mathbb{H}).$$

Then $k, -k \in W_{\mathbb{H}}(A)$, but $0 \notin W_{\mathbb{H}}(A)$.

To see this: Suppose $0 = \langle X, AX \rangle_{\mathbb{H}}$ for $X = (x_1, x_2, x_3) \in S_{\mathbb{H}^3}$, then

$$\overline{x_1}kx_1 + |x_2|^2 + |x_3|^2 = 0.$$

This is a contradiction, since $Re(\overline{x_1}kx_1) = 0$.

So, the quaternionic numerical range is not necessarily convex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

History

1936: L.A. Wolf, Similarity of matrices in which the elements are real quaternions, Bull. Amer. Math. Soc.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

History

1936: L.A. Wolf, Similarity of matrices in which the elements are real quaternions, Bull. Amer. Math. Soc.

1949: H. C. Lee, *Eigenvalues and canonical forms of matrices* with quaternion coefficients, Proc. Roy. Irish Acad.

1951: J. L. Brenner, Matrices of quaternions, Pacific J. Math.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1936: L.A. Wolf, Similarity of matrices in which the elements are real quaternions, Bull. Amer. Math. Soc.

1949: H. C. Lee, *Eigenvalues and canonical forms of matrices* with quaternion coefficients, Proc. Roy. Irish Acad.

1951: J. L. Brenner, Matrices of quaternions, Pacific J. Math.

▶ The study of the convexity of $W_{\mathbb{H}}(A)$ as a subset of \mathbb{H} has begun by Kippenhahn and later followed by Wiegmann.

1951: R. von Kippenhahn, Über den Wertevorrat einer Matrix, Math. Nachr.

1955: N. A. Wiegmann, Some theorems on matrices with real quaternion elements, Canad. J. Math.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ J.E. Jamison proposed a problem to characterize the class of linear operators on quaternionc Hilbert space with convex numerical range.

1972: J.E. Jamison, Numerical Range and Numerical Radius in Quaternionic Hilbert spaces, Doctoral Dissertation, Univ. of Missouri.

▶ Proposities of $W_{\mathbb{H}}(A) \cap \mathbb{R}$ and $W_{\mathbb{H}}(A) \cap \mathbb{C}$ are well studied.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1984: Au-Yeung, On the convexity of numerical range in quaternionic Hilbert spaces, Linear Multilinear Alg.

1993: F. Zhang, *Permanant Inequalities and Quaternion matrices*, Ph.D. Dissertataion, Univ. of California at Santa Barbara.

1994: W. So, R. C. Thompson and F. Zhang, *Numerical ranges* of matrices with quaternion entries, Linear and Multilinear Alg.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1995: F. Zhang, On Numerical Range of Normal matrices of Quaternions, J. Math. Physical Sciences.

1993: F. Zhang, *Permanant Inequalities and Quaternion matrices*, Ph.D. Dissertataion, Univ. of California at Santa Barbara.

1994: W. So, R. C. Thompson and F. Zhang, *Numerical ranges* of matrices with quaternion entries, Linear and Multilinear Alg.

1995: F. Zhang, On Numerical Range of Normal matrices of Quaternions, J. Math. Physical Sciences.

▶ So and Thompson gave a proof (65 pages long).

1996: W. So and R.C. Thompson, *Convexity fo the upper complex plane part of the numerical range of a quternion matrix*, Linear Multilinear Alg.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ In 1997, Zhang posed three questions.

Question 1 : Is there a short and conceptual proof to show that $W_{\mathbb{H}}(A) \cap \mathbb{C}^+$ is convex ?

Question 2 : How is $W_{\mathbb{H}}(A) \cap \mathbb{C}$ related to corresponding complex matrix ?

Question 3: Investigate $W_{\mathbb{H}}(A)$ and $W_{\mathbb{H}}(A) \cap \mathbb{C}^+$ when A is bounded linear operator on infinite dimensional right quaternionic Hilbert space?

1997: F. Zhang, *Quaternions and matrices of quaternions*, Linear algebra Appl.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

Let $A \in M_n(\mathbb{H})$. Then

1. for every $m \in \mathbb{S}$, $W_{\mathbb{H}}(A) \cap \mathbb{C}_m^+$ is called \mathbb{C}_m -section of $W_{\mathbb{H}}(A)$. In particular,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$W^+_{\mathbb{H}}(A) := W_{\mathbb{H}}(A) \cap \mathbb{C}^+.$$

2. $W_{\mathbb{H}}(A : \mathbb{C}) := \Big\{ co(q) : q \in W_{\mathbb{H}}(A) \Big\},$ where $co(q) = q_0 + q_1 i.$

Definition

Let $A \in M_n(\mathbb{H})$. Then

1. for every $m \in \mathbb{S}$, $W_{\mathbb{H}}(A) \cap \mathbb{C}_m^+$ is called \mathbb{C}_m -section of $W_{\mathbb{H}}(A)$. In particular,

$$W^+_{\mathbb{H}}(A) := W_{\mathbb{H}}(A) \cap \mathbb{C}^+.$$

2. $W_{\mathbb{H}}(A : \mathbb{C}) := \Big\{ co(q) : q \in W_{\mathbb{H}}(A) \Big\},$ where $co(q) = q_0 + q_1 i.$

Note that if $A \in M_n(\mathbb{H})$, then $A = A_1 + A_2 j$, for $A_1, A_2 \in M_n(\mathbb{C})$. Define

$$\chi_{A} = \begin{bmatrix} A_{1} & A_{2} \\ -\overline{A}_{2} & \overline{A}_{1} \end{bmatrix}_{2n \times 2n} \in M_{2n}(\mathbb{C}).$$

Theorem (S., 2019) Let $A \in M_n(\mathbb{H})$. Then $W_{\mathbb{H}}(A : \mathbb{C}) = W_{\mathbb{C}}(\chi_A)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (S., 2019)

Let $A \in M_n(\mathbb{H})$. Then $W_{\mathbb{H}}(A : \mathbb{C}) = W_{\mathbb{C}}(\chi_A)$.

► This mplies that $W_{\mathbb{H}}(A) \subseteq \Omega_{W_{\mathbb{C}}(\chi_A)}$. The equality may not hold.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (S., 2019)

Let $A \in M_n(\mathbb{H})$. Then $W_{\mathbb{H}}(A : \mathbb{C}) = W_{\mathbb{C}}(\chi_A)$.

► This mplies that $W_{\mathbb{H}}(A) \subseteq \Omega_{W_{\mathbb{C}}}(\chi_A)$. The equality may not hold.

Example: Let $A = j \in \mathbb{H}$, then $\chi_A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \in M_2(\mathbb{C})$ and $\left\langle \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \right\rangle_{\mathbb{H}} = 0.$

That is, $0 \in \Omega_{W_{\mathbb{C}}(\chi_A)}$, but $0 \notin W_{\mathbb{H}}(A)$ since $j \in \mathbb{S}$.

Connectedness properties

Theorem (Au-Yeung, 1984) Let $A \in M_n(\mathbb{H})$. Then

- 1. for any $\alpha \in \mathbb{R}$, the set $\{X \in S_{\mathbb{H}^n} : \langle X, AX \rangle_{\mathbb{H}} = \alpha\}$ is connected if $A = A^*$
- **2.** the set $\{X \in S_{\mathbb{H}^n} : \langle X, AX \rangle_{\mathbb{H}} = 0\}$ is connected if $A = -A^*$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Connectedness properties

Theorem (Au-Yeung, 1984) Let $A \in M_n(\mathbb{H})$. Then

- 1. for any $\alpha \in \mathbb{R}$, the set $\{X \in S_{\mathbb{H}^n} : \langle X, AX \rangle_{\mathbb{H}} = \alpha\}$ is connected if $A = A^*$
- **2.** the set $\{X \in S_{\mathbb{H}^n} : \langle X, AX \rangle_{\mathbb{H}} = 0\}$ is connected if $A = -A^*$.

Corollary

Let $A \in M_n(\mathbb{H})$. Then $W_{\mathbb{H}}(A) \cap \mathbb{R}$ is either *empty set* or *connected*.

Proof

Since $A = \frac{1}{2}(A + A^*) + \frac{1}{2}(A - A^*)$, we see that

$$W_{\mathbb{H}}(A) \cap \mathbb{R} = \big\{ X \in S_{\mathbb{H}^n} : \ \langle X, (A - A^*)X \rangle_{\mathbb{H}} = 0 \big\}.$$

From above Theorem, It follows that $W_{\mathbb{H}}(A) \cap \mathbb{R}$ is connected.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma (S., 2019)

Let $A \in M_n(\mathbb{H})$ and let L be any line parallel to Y-axis. Then $W^+_{\mathbb{H}}(A) \cap L$ is connected.

Proposition (S., 2019)

Let $\mathbb V$ be a finite subset of $\mathbb C.$ Then

$$Conv(\Omega_{\mathbb{V}}) = Conv(\Omega_{Conv(\mathbb{V})}).$$

Here $Conv(\cdot)$ is an abbreviation for 'Convex hull of'.

Lemma (S., 2019) Let $A \in M_2(\mathbb{H})$. Then every section of $W_{\mathbb{H}}(A)$ is convex.

(ロ)、(型)、(E)、(E)、 E) の(()

Lemma (S., 2019)

Let $A \in M_2(\mathbb{H})$. Then every section of $W_{\mathbb{H}}(A)$ is convex.

proof

By the canonical form of [Brenner, 1951] there exist a unitary $U\in M_2(\mathbb{H})$ such that

$$A = U^* \begin{bmatrix} z_1 & p \\ 0 & z_2 \end{bmatrix} U,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for some $p \in \mathbb{H}$ and $z_1, z_2 \in \mathbb{C}^+$.

Lemma (S., 2019)

Let $A \in M_2(\mathbb{H})$. Then every section of $W_{\mathbb{H}}(A)$ is convex.

proof

By the canonical form of [Brenner, 1951] there exist a unitary $U \in M_2(\mathbb{H})$ such that

$$A = U^* \begin{bmatrix} z_1 & p \\ 0 & z_2 \end{bmatrix} U,$$

for some $p \in \mathbb{H}$ and $z_1, z_2 \in \mathbb{C}^+$. Now we show that the quaternionic numerical range of $\begin{bmatrix} z_1 & p \\ 0 & z_2 \end{bmatrix}$ is convex. Let

 $\begin{bmatrix} x \\ y \end{bmatrix} \in S_{\mathbb{H}^2}$. Then consider the following cases.

Case(1):
$$z_1 = z_2 = z := a + ib, \ p = 0$$

Case(1):
$$z_1 = z_2 = z := a + ib, \ p = 0$$

 $\left\langle \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} a + ib & o \\ 0 & a + ib \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right\rangle_{\mathbb{H}} = a(|x|^2 + |y|^2) + bm_{x,y},$

(ロ)、(型)、(E)、(E)、(E)、(O)()

where $m_{x,y} = \overline{x}ix + \overline{y}iy$.

Case(1):
$$z_1 = z_2 = z := a + ib, \ p = 0$$

 $\left\langle \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} a + ib & o \\ 0 & a + ib \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right\rangle_{\mathbb{H}} = a(|x|^2 + |y|^2) + bm_{x,y},$

where $m_{x,y} = \overline{x}ix + \overline{y}iy$. Clearly, $Re(m_{x,y}) = 0$ and $|m_{x,y}| \le 1$. That is,

$$\{m_{x,y}: |x|^2 + |y|^2 = 1\} \subseteq \{q \in \mathbb{H}: Re(q) = 0, |q| \le 1\}.$$

(ロ)、(型)、(E)、(E)、 E) の(()

Case(1):
$$z_1 = z_2 = z := a + ib, \ p = 0$$

 $\left\langle \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} a + ib & o \\ 0 & a + ib \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right\rangle_{\mathbb{H}} = a(|x|^2 + |y|^2) + bm_{x,y},$

where $m_{x,y} = \overline{x}ix + \overline{y}iy$. Clearly, $Re(m_{x,y}) = 0$ and $|m_{x,y}| \le 1$. That is,

$$\{m_{x,y}: |x|^2 + |y|^2 = 1\} \subseteq \{q \in \mathbb{H}: Re(q) = 0, |q| \le 1\}.$$

If $q \in \mathbb{H} \setminus \{0\}$ such that Re(q) = 0 and $|q| \le 1$, then $\exists s \ne 0$ with $s^{-1}is = \frac{q}{|q|}$. Take

$$x = \sqrt{rac{1+|q|}{2}} \cdot rac{s}{|s|}, \ y = \sqrt{rac{1-|q|}{2}} \cdot rac{s}{|s|}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Then $|x|^2 + |y|^2 = 1$ and $m_{x,y} = q$.

Then $|x|^2 + |y|^2 = 1$ and $m_{x,y} = q$. If q = 0, then by choosing $x = \frac{1}{\sqrt{2}}, y = j\frac{1}{\sqrt{2}}$ we get $m_{x,y} = 0$. This shows that

$$\{m_{x,y}: |x|^2 + |y|^2 = 1\} = \{q \in \mathbb{H}: Re(q) = 0, |q| \le 1\}.$$

Therefore,

$$W_{\mathbb{H}}(A) = \{a + bm : \operatorname{\mathit{Re}}(m) = 0 ext{ with } 0 \leq |m| \leq 1\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then $|x|^2 + |y|^2 = 1$ and $m_{x,y} = q$. If q = 0, then by choosing $x = \frac{1}{\sqrt{2}}, y = j\frac{1}{\sqrt{2}}$ we get $m_{x,y} = 0$. This shows that

$$\{m_{x,y}: |x|^2 + |y|^2 = 1\} = \{q \in \mathbb{H}: Re(q) = 0, |q| \le 1\}.$$

Therefore,

$$W_{\mathbb{H}}(A) = \left\{ a + bm : \operatorname{\mathit{Re}}(m) = 0 ext{ with } 0 \leq |m| \leq 1
ight\}.$$

It is the solid sphere in \mathbb{R}^4 with radius b and center at (a, 0, 0, 0). So $W_{\mathbb{H}}(A)$ is convex.

In particular, $W_{\mathbb{H}}^+(A)$ is the line segment joining Re(z) and z, which is convex.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Case(2):
$$z_1 = a_1 + ib_1, z_2 = a_2 + ib_2, p = 0$$

Case(2):
$$z_1 = a_1 + ib_1, z_2 = a_2 + ib_2, p = 0$$

 $\left\langle \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} a_1 + ib_1 & o \\ 0 & a_2 + ib_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right\rangle_{\mathbb{H}} = a_1 |x|^2 + a_2 |y|^2 + b_1 \overline{x} ix + b_2 \overline{y} iy.$

Case(2):
$$z_1 = a_1 + ib_1, z_2 = a_2 + ib_2, p = 0$$

 $\left\langle \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} a_1 + ib_1 & o \\ 0 & a_2 + ib_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right\rangle_{\mathbb{H}} = a_1 |x|^2 + a_2 |y|^2 + b_1 \overline{x} ix + b_2 \overline{y} iy.$

Suppose its imaginary part is zero, i.e.,

$$b_1 \overline{x} i x = -b_2 \overline{y} i y. \tag{1}$$

Since $|x|^2 + |y|^2 = 1$, we get

$$|x| = \sqrt{\frac{b_2}{b_1 + b_2}}, \ |y| = \sqrt{\frac{b_1}{b_1 + b_2}}.$$
 (2)

From Equations (1), (2), we get

$$x^{-1}ix + y^{-1}iy = 0. (3)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In fact, Equation (1) \Leftrightarrow Equations (2) & (3).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

In fact, Equation (1) \Leftrightarrow Equations (2) & (3). The only choice is,

$$x = \sqrt{\frac{b_2}{b_1 + b_2}}, \ y = \sqrt{\frac{b_1}{b_1 + b_2}}.$$

Therefore,

$$W_{\mathbb{H}}(A) \cap \mathbb{R} = \Big\{ v := rac{a_1b_2 + a_2b_1}{b_1 + b_2} \Big\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

In fact, Equation (1) \Leftrightarrow Equations (2) & (3). The only choice is,

$$x = \sqrt{\frac{b_2}{b_1 + b_2}}, \ y = \sqrt{\frac{b_1}{b_1 + b_2}}.$$

Therefore,

$$W_{\mathbb{H}}(A) \cap \mathbb{R} = \Big\{ v := \frac{a_1b_2 + a_2b_1}{b_1 + b_2} \Big\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Claim: $W_{\mathbb{H}}^+(A) = Conv(\{z_1, z_2, v\}).$ In particular, if we take $x, y \in \mathbb{C}$ with $|x^2 + |y|^2 = 1$, then $z_1|x|^2 + z_2|y|^2 \in W_{\mathbb{H}}^+(A).$

We show that the line segment joining v and z_1 is in $W_H^+(A)$. Let $u_t := a_1(1-t) + vt$, $x_t = \sqrt{\frac{a_2-u_t}{a_2-a_1}}$ and $y_t = j \sqrt{\frac{u_t-a_1}{a_2-a_1}}$ for $t \in [0,1]$. Then $|x_t|^2 + |y_t|^2 = 1$ with

$$\left\langle \begin{bmatrix} x_t \\ y_t \end{bmatrix}, \begin{bmatrix} a_1 + ib_1 & 0 \\ 0 & a_2 + ib_2 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} \right\rangle_{\mathbb{H}} = (a_1 + ib_1)(1 - t) + vt.$$

Similarly, the line joining v and z_2 is in $W_H^+(A)$.

We show that the line segment joining v and z_1 is in $W_H^+(A)$. Let $u_t := a_1(1-t) + vt$, $x_t = \sqrt{\frac{a_2-u_t}{a_2-a_1}}$ and $y_t = j \sqrt{\frac{u_t-a_1}{a_2-a_1}}$ for $t \in [0, 1]$. Then $|x_t|^2 + |y_t|^2 = 1$ with

$$\left\langle \begin{bmatrix} x_t \\ y_t \end{bmatrix}, \begin{bmatrix} a_1 + ib_1 & 0 \\ 0 & a_2 + ib_2 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} \right\rangle_{\mathbb{H}} = (a_1 + ib_1)(1 - t) + vt.$$

Similarly, the line joining v and z_2 is in $W^+_H(A)$. By the fact that $W^+_{\mathbb{H}}(A) \cap L$ is connected, we get that

$$Conv(\{z_1, z_2, v\}) \subseteq W^+_{\mathbb{H}}(A).$$

Finally, the equality holds since

$$W^+_{\mathbb{H}}(A) \subseteq Conv(\Omega_{\{z_1, z_2, v\}}) = Conv(\Omega_{Conv(\{z_1, z_2, v\})}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Graph of $W_{\mathbb{H}}^+(A)$:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Case(3):
$$z_1 = z_2 = 0$$
.

Case(3):
$$z_1 = z_2 = 0$$
.
By Young's Inequality, we have

$$\begin{split} \left| \left\langle \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} 0 & p \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right\rangle_{\mathbb{H}} \right| &= \left| \overline{x} p y \right| \\ &\leq |p| \cdot \frac{|x|^2 + |y|^2}{2} \\ &= \frac{|p|}{2}. \end{split}$$

(ロ)、(型)、(E)、(E)、 E) の(()

Case(3):
$$z_1 = z_2 = 0$$
.
By Young's Inequality, we have

$$\begin{split} \left| \left\langle \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} 0 & p \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right\rangle_{\mathbb{H}} \right| &= \left| \overline{x} p y \right| \\ &\leq |p| \cdot \frac{|x|^2 + |y|^2}{2} \\ &= \frac{|p|}{2}. \end{split}$$

Let |p| = 1. Then for any q with $|q| \le \frac{1}{2}$, we have $q = re^{m_q\theta}, 0 \le r \le \frac{1}{2}$ where $m_q = \frac{lm(q)}{|lm(q)|}$. If we choose $x = e^{-m_q\theta} \cos\alpha$ and $y = p^{-1} \sin\alpha$ such that $\sin 2\alpha = 2r \le 1$ and $0 \le \alpha \le \frac{\pi}{4}$, then $\overline{x}py = q$.

It shows that $W_{\mathbb{H}}(A) = \{q \in \mathbb{H} : |q| \le \frac{1}{2}\}$. If $|p| \ne 1$, then we have

$$W_{\mathbb{H}}(A) = W_{\mathbb{H}}\Big(egin{bmatrix} 0 & rac{p}{|p|} \ 0 & 0 \end{bmatrix}\Big)|p| = \Big\{q\in\mathbb{H}:\; |q|\leq rac{|p|}{2}\Big\}.$$

Therefore,

$$W^+_{\mathbb{H}}(\mathcal{A})=\Big\{z\in\mathbb{C}^+:\;|z|\leq rac{|p|}{2}\Big\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

It is the upper half of the disc with radius $\frac{|p|}{2}$.

Graph of $W_{\mathbb{H}}^+(A)$:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Case(4):
$$z_1 = a_1 + ib_1, z_2 = a_2 + ib_2, p \neq 0$$

Since $\Gamma := \left\{ u + \tau : u \in W_{\mathbb{H}}^+ \begin{pmatrix} z_1 & 0 \\ 0 & z_2 \end{pmatrix} \right\}, \tau \in \mathbb{C}^+$ with $|\tau| \leq \frac{|p|}{2}$
is convex and $W_{\mathbb{H}}^+(A) \cap L$ is connected, it shows that $W_{\mathbb{H}}^+(A)$ is convex.

Graph of $W_{\mathbb{H}}^+(A)$: It is clear that for any $\lambda \in W_{\mathbb{H}}^+(A)$, we have

$$\lambda = \overline{x}z_1x + \overline{y}z_2y + \overline{x}py$$
, for some $\begin{bmatrix} x \\ y \end{bmatrix} \in S_{\mathbb{H}^2}$

and $|\lambda| \leq \max\{|z_1|, |z_2|\} + \frac{|p|}{2}$. Therefore, $W_{\mathbb{H}}^+(A)$ is a convex subset of upper half of the disc with radius $R := \max\{|z_1|, |z_2|\} + \frac{|p|}{2}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

There is no guarantee that either Re(p) + |Im(p)|i or $\frac{|p|}{2}i$ lies in $W_{\mathbb{H}}^+(A)$. The following are the examples of three different possibilities.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

There is no guarantee that either Re(p) + |Im(p)|i or $\frac{|p|}{2}i$ lies in $W_{\mathbb{H}}^+(A)$. The following are the examples of three different possibilities.

Example 1

If $z_1 = -1 + i$, $z_2 = 1 + i$ and p = 3 - 4k, then $3 + 4i \notin W^+_{\mathbb{H}}(A)$, but $\frac{|p|}{2}i = \frac{5}{2}i \in W^+_{\mathbb{H}}(A)$.

Example 2 If $z_1 = 3 + 4i$, $z_2 = 20 + i$, p = 16j, then neither re(p) + |im(p)|i = 16i nor $\frac{|p|}{2}i = 8i$ lies in $W_{\mathbb{H}}^+(A)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Theorem (S., 2019)

Let $A \in M_n(\mathbb{H})$. Then every section of $W_{\mathbb{H}}(A)$ is convex.

Proof

Suppose $z, w \in W^+_{\mathbb{H}}(A)$, then

$$z = \langle X, AX
angle_{\mathbb{H}}, \ w = \langle Y, AY
angle_{\mathbb{H}}$$

for some $X, Y \in S_{\mathbb{H}^n}$. We show that the line segment joining z and w contained in $W^+_{\mathbb{H}}(A)$. Let V be the two-dimensional subspace generated by z, w, which is isomorphic to \mathbb{H}^2 and let P be the projection of \mathbb{H}^2 onto V.

Then $PAP|_{V} \in M_{2}(\mathbb{H})$ with

$$\langle X, PAPX \rangle_{\mathbb{H}} = z, \ \langle Y, PAPY \rangle_{\mathbb{H}} = w.$$

This shows that $z, w \in W_{\mathbb{H}}^+(PAP|_V)$. Since $W_{\mathbb{H}}^+(PAP|_V)$ is convex (from previous Lemma), the line segment joining z and w is contined in $W_{\mathbb{H}}^+(PAP|_V) \subseteq W_{\mathbb{H}}^+(A)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hence $W_{\mathbb{H}}^+(A)$ is convex.

References

- P. Santhosh Kumar, A note on convexity of sections of quaternionic numerical range, Linear Algebra Appl. 572 (2019), 92-116.
- K.E. Gustafson and D.K.M. Rao, Numerical Range, Universitext, Springer-Verlag, New York (1997).
- W. So, R.C. Thompson and F. Zhang, *The numerical range of normal matrices with quaternion entries*, Linear Multilinear Algebra 37 (1994).
- F. Zhang, *Quaternions and matrices of quaternions*, Linear Algebra Appl. 251 (1997) 21-57.

THANK YOU

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで